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SUMMARY

Experiments have been made for supersonic flow of air in the
entrance region of round tubes for measurements of friction coefficients
with and without heat transfer. The experimental data are presented and
the results interpreted in terms of two simple flow models, the one-
dimensional and the two-dimensional flow models.

In addition to the usual method of computing the local apparent
and "true" friction coefficients on the basis of individual measurements
over a short distance of flow, a new method has been proposed in order
to eliminate the scattering due to small inherent errors in pressure
measurement. The measured values of static pressure and rate of heat
transfer are plotted versus the modified length Reynolds number, as
suggested by a theoretical analysis for the laminar boundary layer of a
compressible flow in the entrance region of a tube. By means of the
method of least squares, mean curves have been computed to represent
those points where a laminar boundary layer appears to exist. Both the
local apparent and "true" friction coefficients are then computed on the
basis of these mean curves.

The experimental results are compared with theoretical predic-
tions for laminar flow over a flat plate and in the entrance region of a
tube.

Presented at the First Iowa Thermodynamics Symposium,
State University of Iowa, April 27-28, 1953.
Associate Professor of Mechanical Engineering, Massachusetts
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NOMENCLATURE

A cross-sectional area
a inside radius of tube
al.bl,Cld1 constants used in equations (8) and (11)

c specific heat at constant pressure

c specific heat at constant volumev

c discharge coefficient of nozzlew

D inside diameter of tube
FTo Ff functions of k and M, defined by equations (25) and

(26) respectively 2

f local coefficient of friction, 2g•'/f V
g acceleration given to unit mass by unit force
k ratio of specific heats, c /c

p v
L distance from end of curved contour of nozzle

M Mach number, V/gk-R-T
n exponent in equation (11)
p static pressure
Q heat transfer per unit time
q heat transfer per unit time per unit area
R perfect-gas constant
ReD diameter Reynolds number fVD/,IAg

ReL length Reynolds number fVL/•g

s entropy per unit mass
T absolute temperature
V velocity
w mass rate of flow
P density

thermal conductivity
A viscosity

shear stress at wall
modified length Reynolds number defined by
equation (7).............. .

Superscript * refers to throat of supersonic nozzle where M = 1
Subscripts:

b refers to boundary layer
c refers to isentropic core

j refers to station numbers
o refers to hypothetical entrance plane of the tube, where

the boundary layer is of zero thickness
oi refers to upstream stagnation conditions

oj refers to stagnation conditions at station j 1
0 refers to free stream conditions for flat-plate flow

w refers to wall conditions



INTRODUCTION

Many engineering problems exist where the effects of development
of the fluid flow in the entrance region of a duct or tube determine the
nature of the flow for both subsonic and supersonic speeds. It is now well
established that for smooth entrance into a tube, the flow of air at sub-
sonic or supersonic speeds is attended by the growth of a boundary layer
along the walls of the tube and a gradual filling of the tube cross section
with this boundary layer. This simple picture is complicated by the
existence of transition from a laminar to a turbulent boundary layer and
for supersonic flow by the possible occurrence of interaction between
shock waves and boundary layer. In addition, it is very difficult to main-
tain supersonic flow in the tube for a sufficiently long length in order to
approach the well-known "fully developed" flow attained for subsonic
speeds in long tubes. Hence the understanding of supersonic-flow phenom-
ena in tubes must be sought almost wholly in terms of the flow behavior
in the entrance region of the tube.

Up to the present, the phenomena occurring in supersonic flow in
the entrance region of a tube have been studied mostly by experimental
methods. The data obtained in these tests have usually been interpreted
in terms of a simple one-dimensional flow model, which is based on the
simplifying assumption of uniform fluid properties at any cross section
of the tube. Recently a somewhat more complicated but arbitrarily
simplified two-dimensional flow model has also been used to interpret
the test data. However, within the last year, solutions have been obtained
for the system of partial differential equations of energy, momentum, and
continuity, together with the equation of state, for the case of supersonic
flow of air in a tube with smooth entrance and with a developing laminar
boundary layer originating at the entrance plane of the tube. Since this
theoretical analysis is based on the equations for a laminar boundary '
layer, comparisons made with the test results will necessarily be limited 14i
to those portions of the supersonic flow where a laminar b oundary layer .
appears to exist in the tube.

The objectives of the present paper are to give some recent data
on supersonic flow of air in a round tube, with and without heat transfer
to the air, and to compare the local friction coefficients computed from
these data by means of the one-dimensional flow model (1-D.F.M.) and
by the two-dimensional flow model (2-D.F.M.) with those computed from
the theoretical solution.
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The work described herein is a portion of a research program,
sponsored by the Office of Naval Research, with the objective of ob-
taining reliable and accurate data on the rate of heat transfer to air
moving at supersonic speeds.

THEORETICAL SOLUTIONS

A brief summary of theoretical analyses for flow in the entrance
region of a tube is given here in order to comprehend better the phenom-
ena occurring in the case of supersonic flow in the entrance region.

There are many analyses available in the literature which are
based on the simple 1-D.F.M. for fully developed flow of incompressible
and compressible fluids, with and without heat transfer. These analyses,
however, should not be used to determine the behavior of fluid flow in the
entrance region of tubes, where the effects of rapidly changing velocity
and temperature profiles have a strong influence on the values of the
friction coefficient, heat-transfer coefficient, and other variables.

Several theoretical analyses for tube flow are available based on
a two-dimensional flow model wherein an approximation to an unknown
changing velocity profile is used in the entrance region. The analyses of
Hagenbach (1)*, Neumann (2), Couette (3), Boussinesq (4), Schiller
(5), Atkinson and Goldstein (6), and Langhaar (7) have been restricted
mainly to the adiabatic flow of an incompressible fluid and for a laminar
boundary layer near the entrance. The analyses of Latzko (8) and Elser
(9) are the only ones which were found for a developing turbulent bound-
ary layer originating at the entrance plane of the tube. Similar analyses
for flow of a compressible fluid in a tube have not been found.

A search of the literature revealed a need for an analysis of the
flow of a compressible fluid in the entrance region of a tube. Further-
more, this analysis would help in the understanding of the experimental
data for supersonic flow in a tube. It may be shown that flow in a tube is
nearly the same as the. flow. ove.r a flat plate with a. lamina.r, boundary ......
layer starting at the leading edge, provided that the pressure gradient in
the free stream for plate flow is the same as that for tube flow. However,
most analyses for flow of a compressible fluid over a flat plate are re-
stricted to zero pressure gradient; thus the results of these analyses can
serve only as a first approximation towards a solution of the flow in a
tube, in a region where the thickness of the laminar boundary layer is
small. The values of local friction coefficient, shown in Fig. 1, are

computed from one of the most recent analyses for supersonic flow of air

* Numbers in parentheses refer to items in Bibliography.
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over a flat plate, with variable properties taken into account, given by
Van Driest (10).

An analysis of the flow of a compressible fluid in the entrance
region of a tube was undertaken by use of the basic partial differential
equations of energy, momentum, and continuity for a developing lam-
inar boundary layer which coexists with an isentropic core in the cen-
tral portion of the tube. These equations, simplified by the usual
assumptions of boundary-layer theory, were transformed into a series
of simultaneous ordinary differential equations and these, in turn, were
solved with the aid of the M.I.T. Differential Analyzer for various
boundary conditions. The first attempt to obtain solutions was based on
the simplifying assumption of constant fluid viscosity and thermal con-
ductivity; this set of solutions has appeared in the doctoral dissertation
of Toong (11).

The results of the above analysis for local friction coefficients
are shown in Fig. 2 for Mach numbers of zero and 2.8 at the entrance
plane of the tube. For tube flow a new variable, the modified length
Reynolds number,

1/2
2(Reo) /Re Do is used as the abscissa on the basis of the

analysis, so that a simple chart corresponding to Fig. 1 for flow over
a flat plate is no longer available. Fig. 2 shows also the comparison
between the flat-plate and tube-flow solutions for the same boundary
conditions; it is seen that the tube-flow solution approaches the flat-
plate solution at a zero value of the abscissa, or at the entrance plane
of the tube. The tube-flow solutions shown in Fig. 2 will be used as a
basis of comparison with the friction coefficients computed from test
data.

EXPERIMENTAL APPARATUS

In the course of this program, supersonic flow of air in round
tubes was obtained in two different kinds of apparatus. For adiabatic
flow, the supersonic stream was passed through a round tube made
from a good thermal insulator, such as textolite or lucite, and the tube
was insulated either with a 14-inch thickness of rock wool or by a
region of high vacuum. For flow with heat transfer, the supersonic
stream was passed through a round tube made from a good thermal
conductor, brass, and the tube was surrounded by a large mass of con-
densing steam. The description of the different kinds of test apparatus,
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the means of testing, the preparations of the air stream, and some
results of the tests have been published in a series of papers (12),
(13), (14), (15). For this reason only a brief summary is given in
Table 1 of the different test combinations used in this general
program.

TABLE 1

SUMMARY OF TEST COMBINATIONS

Symbol Nozzle Test Section L/D M
o

ADIABATIC A-1 Brass Textolite 37.6 3.0
" A-2 Brass Lucite 41.6 3.0
"it B Stainless steel Lucite 41.5 2.8

HEAT TRANSFER C Brass Brass 29.2 3.0

The test combinations A-i, A-2, and B and the data obtained for
adiabatic supersonic flow have been described in detail in reference
(14). The heat-transfer apparatus, test combination C, has been described
in reference (12).

EXPERIMENTAL 
RESULTS

General

Table 2 presents a summary of the runs made with each test
combination and of the ranges of Reynolds number covered. The dia-
meter Reynolds number is based on the tube diameter and on the mean
stream properties at the first station. The length Reynolds number is
based on the distance from the end of the curved contour of the supersonic
nozzle and on the mean stream properties at that distance..

TABLE 2

SUMMARY OF TESTS

Test No. of Minimum Maximum Maximum
combination runs ReDXl0-5 ReX10-5 Re L X15

ADIABATIC A-I 12 0.76 4.7 107

"A-2 10 0.50 4.6 117

"B 18 0.15 4.8 105
HEAT TRANSFER C 11 0.52 2.1 36

I!
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In order to avoid repetition and to keep the size of this paper
within reasonable bounds, neither the original data obtained in these
tests will be given in detail nor will all the data be given in chart

form. Rather a careful and objective selection of these data has been
made so as to aid in the understanding of the phenomena occurring in
the supersonic flow of air in the tube. This selection has been made to
permit comparisons between results based on the 1-D.F.M., the 2-D.F.M.,
and the theoretical solutions for the tube flow.

Since the theoretical solutions are limited to that portion of
tube flow where a laminar boundary layer coexists with an isentropic
core of central fluid, the selection has been limited mainly to those
test results where a laminar boundary layer appears to be present in
the tube.

In references (14) and (15) describing the adiabatic flow
measurements and results, six values of the diameter Reynolds number
were selected to cover the range from laminar to turbulent flow. For
reasons given above, the data for the larger values of the diameter
Reynolds number will not be included here since they encompass the
transition and turbulent zones. Thus for the comparison of friction co-
efficients with and without heat addition, only four values of the dia-
meter Reynolds number are shown here.

Laminar Boundary Layer

It has been shown in references (14) and (15) that a simple
interpretation of the data on friction coefficients is obtained on the4
basis of the growth of a laminar boundary layer near the entrance of
the tube, with transition to a turbulent boundary layer occurring at
some distance downstream from the tube entrance. Figs. 3, 4, 5 and 6
show the modified pressure ratios, the Mach numbers, the apparent
friction coefficients and the "true" friction coefficients for four values
of the diameter Reynolds number, in the range where all the evidence
indicates that laminar boundary layer exists for some distance down-
stream from tube entrance.

The modified pressure ratio is used to compare pressure
distributions with and without heat addition for different nozzle and
test-section combinations. The Mach numbers shown are based on
both the 1-D.F.M. and the 2-D.F.M. The apparent friction coefficients
are based on the 1-D.F.M. while the "true" friction coefficients are
based on the 2-D.F.M. The calculated quantities based on one flow

1!
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model are plotted on each chart without reference to the quantities
calculated from the other flow model.

In Figs. 3, 4, 5 and 6, both the local apparent and the local
true friction coefficients scatter considerably about the reference
lines of the theoretical solutions. The reasons for this scattering are
that each point represents the measured small pressure differential
over a length of two or four diameters of flow and that any fluctuation
in the pressure distribution or small error in pressure measurement
produces a grossly exaggerated change in the calculated friction co-
efficient. In the region of the laminar boundary layer of the flow, near
the entrance plane, the scattering is also caused by the over-expansion
and the under-expansion of the air passing through the fixed-geometry
supersonic nozzle as the stagnation pressure is changed to vary the
diameter Reynolds number. It is evident that the scattering obscures
any definite effect of heat addition on the apparent or true friction co-
efficients. An examination of the rest of the tests, not shown in Figs.
3, 4, 5 and 6, yielded the same conclusions.

In order to decrease the influence of the scattering, several
different methods of examining the data were tried. Fig. 7 shows the
result of plotting a group of tests on the same chart; here the individ-
ual values of friction coefficients on Figs. 3, 4, 5 and 6 are all plotted
on a single chart with the theoretical solution for a flat plate as a
reference line. The overall scattering in the apparent friction co-
efficients based on the 1-D.F.M. is quite large, and although this scat-
tering is greatly reduced in the lower half of Fig. 7 for friction co-
efficients based on the 2-D.F.M., it is difficult, nevertheless, to reach
any conclusion regarding the effect of heat addition on the friction

coefficient.

NEW METHOD OF TREATMENT OF EXPERIMENTAL DATA

General

Since the customary method of interpreting the experimental
data did not yield any conclusion with regard to the effect of heat addition
on the apparent or on the true friction coefficients because of the large
degree of scattering of the data, a new method of treating the data was
tried. The general basis of this method is described first, then the de-
tails of the new analyses needed are presented, and finally the results

obtained are shown.
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Consider first the supersonic flow of air over a flat plate with
zero pressure gradient. Van Driest (10) and others have shown that
the true local friction coefficient is a function of the length Reynolds
number, the ratio of wall temperature to free stream temperature,
and of free stream Mach number, i.e.

f = f (Re M , IT ), (1)
1 L' 0' C

if dissociation of the air is ignored. Furthermore, it is also known
that a particular combination of variables, namely the product of the
friction coefficient and square root of the length Reynolds number, is
a function of the remaining two variables, i.e.

f(Re L) =f2 (Moo , T IwT ) (2)

This function is shown in Fig. 1.

Consider next the supersonic flow of air in a round tube with
finite pressure gradient in the direction of flow. The theoretical
solutions show that the true local friction coefficient is a function not
only of the length Reynolds number, the ratio of wall temperature to
core temperature, and the Mach number of the central core of fluid
but also of the diameter Reynolds number at the entrance of the tube,
i.e.,

f = f 3 (ReLo' Mo0 T /T 0 , ReDo) (3)

In addition, the analysis indicate that a particular combination of
variables, namely the product of the friction coefficient and square
root of the length Reynolds number, is a unique function of the Mach
number, of the ratio of wall temperature to core temperature, and of
another particular combination of variables, the ratio of square foot
of the length Reynolds number to the diameter Reynolds number, i.e.

f(Reo)L/2O f4[ (Re L/2Re M, Tw/T] (4)

Furthermore, the pressure ratio and rate of heat transfer can be
written as

P/Po =f 5 I (ReLo2 /ReDo M 0T /T 0 1 (4a)o' o/4a
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qa/oT = f 6 [(ReLo 1/2/ ReDo, Mo, T/To (4b)

Since this second combination of variables appears quite often, it is
called briefly the "modified length Reynolds number". For clarity
the definitions of the two Reynolds numbers are repeated here:

ReLo = LoV/pog (5)

ReDo D V A/•o g (6)

where subscript o refers to the origin of the boundary layer at a
hypothetical entrance plane of the tube, where the fluid properties
are assumed to be uniform, as shown in Fig. 8. Since the fluid
properties at state o cannot be measured directly in any apparatus,
they are evaluated from data taken near the entrance of the tube. The
modified length Reynolds number will be abbreviated, hereafter, in the
equations to follow by the definition

1/21/

S- 2RLo) 12/RDo (7a)

= 2(L/D) /2/ (Re Do)1/2 (7b)

The theoretical solutions for tube flow not only indicate the
combination of variables to use but also lead to a method, based on
equations (4a) and (4b), of utilizing all the experimental data on one
test combination for flow either with or without heat addition. This
result is significant since the previous calculations for individual
tests, shown in Figs. 3, 4, 5 and 6, indicate the difficulties inherent
in measuring pressure differences over small distances of flow. If
the values of the ratio of static wall pressure to stagnation pressure,

P/Poi, are plotted against the modified length Reynolds number, as in
Figs. 9 and 10, a single mean or faired curve could be drawn through
the points of all the measurements. Likewise, according to equation
(4b), a single mean or faired curve could be drawn through the points
of a plot of the quantity, qa/(A T)cl, versus the modified length

Reynolds number as shown in Fig. 11.

Two problems arise, however, which must be solved in orde;
to utilize all the data for a given test combination. The first is how
to obtain a mean curve through the experimental points in an objective
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manner, and second, how to obtain the local friction coefficients from
these mean curves.

Mean Curves by the Method of Least Squares

An objective and satisfactory method of placing a mean curve
through the points on Figs. 9, 10, and 11 is to use the well-known de-
vice of least squares, although considerably more computation is
required by this method than by use of a faired curve drawn visually.
However, since the theoretical analysis is valid only for a laminar
boundary layer, a careful examination of the data was made before
using the method of least squares. First, all points corresponding to
the start of the transition from a laminar to turbulent boundary layer
were given a weight of one-half; these points were clearly discernible
for the test combination C in Fig. 11. Second, all points after the start
of transition were eliminated. Third, those points which corresponded
to data taken at the first station downstream of the entrance were given
a weight of one-half, since they were subjected most to the effect of
over-expansion and under-expansion in the supersonic nozzle. About
one-half of the points corresponding to a laminar boundary layer on
Fig. 9 were thus reduced in weight to one-half, about one-third of the
total points on Fig. 10, and about one-third of the total points on Fig. 11.

Examination of the data in Figs. 9 and 10 indicated that extra-
polation from finite values of tihe modified length Reynolds number to
zero would introduce considerable error in any mean curve. Hence an
arbitrary extrapolation device was used. The value of the ratio of static
pressure to inlet stagnation pressure, P/Poi" was computed for isentropic
flow for the actual area ratio of the supersonic nozzle; this isentropic

value was assumed to be that existing at the entrance plane of the tube
flow, or for state o in Fig. 8. Thus, a mean curve of the form

1 52

P/poi =a +c (8)

was passed through the weighted points by the method of least' squares,
with an arbitrarily selected value of the constant a1 .

For the points in Fig. 9, the resultant equation is

P/poi = 0.03698 + 0.82925 - 3.259 2 (9)
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For the points in Fig. 10, the resultant equation is

P/P 0.02641 + 0.65845 + 3.097 2 (10)

For the points on Fig. 11, a simple equation of the form

qa/ NTo = d 1 5 n (11)

was passed through the weighted points by the method of least
squares; the result is

qa/(AT)cl = 0.1726 5-1.027 (12)

As explained previously, all fluid properties are evaluated from data
taken at station 1.

Use of Mean Curves to Calculate Local Friction Coefficients

A. One-Dimensional Flow Model with Heat Transfer

The following assumptions are made in the analysis of the
1-D.F.M.:

1. All fluid properties and velocities are uniform at any
cross-section of the flow.

2. Air is a perfect gas with a constant value of the ratio
of specific heats (k -- 1.40) over the range of temperature

under consideration.
3. Adiabatic flow exists up to the entrance plane of the tube.

The following relations hold at each section of the flow in the
tube

Continuity: w =,PVA (13)

.............. quation of .state:p 'RT.........................(.4). ..................

Energy: Toj = T + V2 /2gcp (15)

2 2
Definition: M V /gkRT (16)

Definition: c (w/A*)/(w/A*)(17)
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Definition: f R 2g T '/ V2 (18)

Assumption: p/p.o = a1 + b 1  + cl 2  (8)

Assumption: qa/ A 0T = dl n (11)

O

Identity: Toj/Toi = 1 + T Toj/T (19)

For a control volume which encloses the fluid between two
adjacent stations, separated by an infinitesimal distance, the energy
and momentum equations are as follows:

Energy: dQ = q 7tDdL = wc dT. (20)

Momentum: -Adp - t7tDdL = d(wV/g) (21)

From equations (13) through (17), it may be derived that

k+l
1 p A T 2(k-1) 1 f -M f (M,k) (22)

c p. A* T° k+l

It is to be noted that the right-hand side of equation (22) is a
unique function of the Mach number if k is a constant. This function
is tabulated under the heading pA/poA* in Table 30 of reference (16).

The symbol p of reference (16) is analogous to p used in this paper.

Combining equations (13), (7), (11) and (20) and integrating
between station j and station j + 1

.............. . ..... . . . ......

AT . 4d TN 2n2n

T . (2+n) c )j+) ) (23)
01

The friction coefficient may be computed by means of the
following expression, derived by combining equations (13), (14), (15),
(16), (18) and (21),
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2 dT .

dM = F T + Ff 4f d • (24)
T. foj

2 2 k-i1

M 2(1 + kM 2) (1 +- --- M2)
where F = 2 (25)

kM4 (1 + M2)

and F - M 1 + 2 (26)
f ~ 1 - M2

The quantities FT and Ff are functions of k and M only and

are tabulated as such in reference (17).

Equation (24) may be put in a finite-difference form, and re-
arranged, using equation (7)

2 2 - 2 F T °(j+)-T (ReTo)l227)

AM. M M. = f~~l oJ~ 41 +1 e 1/2
j+l j T T . f j+/2 L -527)03

where FT and Ff are to be evaluated at the mean value of the Mach
T f

numbers at the stations under consideration. The friction coefficient,

fj+1/2' thus computed is assumed to be the mean value between these

two stations.

Method of Computation Using 1-D.F.M.

Values of 5 are assumed and from equations (8), (19) and (23),
the left-hand side of equation (22) is evaluated, using the known value
of the area ratio, A/A*, for the particular test combination. The value
of. the nozzle discharge -coefficient is assumed to'be" unity for this
computation. The value T /T . is found from the isentropic area-ratio0 03

for the particular supersonic nozzle used. The values of No and A in

equation (23) are found from T /To. and an assumed value for To. of

570°Fabs. The values of T oi used in the actual experimental work were

very close to ll0°F and thus this assumption is valid. Equation (22)
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therefore gives values of the Mach number at the assumed values of
the modified length Reynolds number.

The curves of local apparent friction coefficient versus length
Reynolds number may be obtained from the previous computations for
a particular value of the inlet diameter Reynolds number. For any
consecutive values of5 , the quantity 4 Ff A (L/D) has been

f j+1/2
calculated. This quantity is identical with the last term of equation
(27). From equation (7b), L/D is known for each value of S and hence
S(L/D) is known. The value of f j+/ 2 may thus be computed.

The corresponding value of length Reynolds number for this
value of local friction coefficient is found as follows: From equation
(7a), ReLo is known. This is related to ReL by

Re /Re = 4U /A (28)
L Lo o

The Mach number is known for each value of 5 and hence the
stream temperature and viscosity can be evaluated. The arithmetical
mean value of ReL for any two adjacent stations is used as the abscissa

for the previously computed value of f j+/2" The results of such a cal-

culation are shown in Fig. 12 for an inlet diameter Reynolds number of
5

0.5 x 10

This one-dimensional analysis is valid for the computation of
data with and withoui heat transfer, since adiabatic flow corresponds
merely to a special case of equation (11), namely d1 = 0.

B. Two-Dimensional Flow Model with Heat Transfer

The following assumptions are made in the analysis of the
2-D.F.M.

1. There exists in the entrance region of the tube a laminar
boundary layer, where both the viscous and heat-transfer
effects are assumed to be predominant. )

2. An isentropic, one-dimensional flow exists in the central
core of the tube.

3. The static pressure is uniform across each section of the
tube.
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4. Air is a perfect gas with a constant value of the ratio of
specific heats.

5. The laminar boundary layer is assumed to have uniform
velocity and temperature profiles.

6. Adiabatic flow exists up to the entrance plane of the tube.

At each cross-section of the flow inside the tube, the following
relationships are valid:

Continuity: w = wb + wc = OVoA (29)

Continuity: wc = fcVcAc (30)

Continuity: wb = PbVbA = JbVb (A-Ac) (31)

Equation of State: p =bcRTc (32)

Equation of State: p = bRTb (33)

Definition: wc T w (c T + V 2 /2g)
p oj c pc c

+ wb (cpTb + V2/2g) (34)

Definition: M c V/ gkRT (35)

Assumption: Vb = V /2 (36)b c

Assumption: P/Poi = a1 + b 1 5 +c 1 5 2  (8)

Assumption: qa /INoT = d 1 5 n (11)

The following relationships hold between the upstream
stagnation state and any state inside the one-dimensional isentropic
core:

Isentropic: p/poi = (c / )oi)k (37)

Isentropic: P/P (Tc /T )k/(k- 1) (38) -I



-15-

Isentropic: c T + V 2/2g= c T. (39)p c c p 01

The following expressions may be derived for the control
volume which encloses the fluid between two adjacent stations
j and j+l:

Energy: Q j-(j+I) =wcp(To(j+l) - T oj) wcp T oj (40)

Momentum: (pj - p j)A - Z7tD(L J - Lj)

I c +wbVb wcV +wbVb)

g Jj+l j

The local friction coefficient is defined in terms of the wall
shearing stress by

1/2f. c [ c)) (42)"•=1/ J +1/2g j+ g j+1

It is to be noted that equation (40) suggests that the value of T . de-

fined by equation (34) is identical with that of the local stagnation
temperature in the analysis of the 1-D.F.M. Hence, from part A,
equations (19) and (23) may be used to calculate T ./T. at any station.

Equation (41) may be put into the following working form by
means of equations (29), (30), (31), (32), (33), (35) and (42)

i_ _ +1 c +_p_ ckM2[oi 1 fI2 3 L3 f!2 ( 2

12Doi j oi ) j+1 i

[ Vc Po +wb Vb Po W V cp 0 Wb Vb Po
_5_ + c

Po T i 1WVo Poi w V 00 V +

(43)

V M
where =-- M c (44)

0 O
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1 Vb JcVc Vb
w T. V w/A 2gc T

andc -- c p-o= (45)
WT., T V V 2

01 c b b
T T. V 2gc T

oj 03 c p oj

Method of Computation Using 2-D.F.M.

The curves of local true friction coefficient versus length
Reynolds number can be computed from equations (43), (44) and (45)
for any value of inlet diameter Reynolds number. An examination of
the quantities in these three equations shows that they are functions
of the modified length Reynolds number and the entrance Mach number
only. The entrance Mach number may be determined from the isen-
tropic area-ratio of the nozzle used in the particular test combination.

Thus, the quantity L Li may be computed between any
T+1/2 [% -q i I

two arbitrary values of the modified length Reynolds number. The
necessity for assuming the inlet diameter Reynolds number in order to
find the friction coefficient is obvious from equation (7b). The assump-

tions that the values of upstream stagnation temperature and the nozzle
discharge coefficient are respectively 5700 F abs and unity are made as
in the 1-D.F.M. The value of the length Reynolds number corresponding
to the friction coefficient is determined as in the 1-D.F.M. from an
equation similar to equation (28), namely,

ReL Ao (46)

ReLo /-,cj

The results of such a calculation are shown in Fig. 12 for a
particular inlet diameter Reynolds number of 0.5 x 105. This two-
dimensional analysis is again valid for the computation of data with
and without heat transfer.

Results

Fig. 12 shows the variation with length Reynolds number of the
local apparent and true friction coefficients, computed by the use of the
above analyses for a particular value of the inlet diameter Reynolds

number of 0.5 x 105. In the same figure are plotted also the theoretical
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predictions for adiabatic laminar flow over a flat plate and in the
entrance region of a tube. It is found that the values of local apparent
friction coefficient increase with heat addition. However, contrary to
what is predicted from theory, the values of local true friction co-
efficient are also found to increase with heat addition. This discrepancy
may be explained by the fact that the arbitrary 2-D.F.M. used in com-
puting the local true friction coefficient has not completely taken account
of the actual change in the momentum flux. Thus, the "true" friction
coefficient will be somewhat too high.

Good qualitative agreement is found to exist between the experi-
mental results computed from the new method and the theoretical pre-
dictions for laminar flow over a flat plate and in the entrance region of
a tube. Better quantitative agreement is expected if the theory for tube-
flow takes into account the variation of viscosity and thermal conduc-
tivity of air inside the boundary layer.

CONCLUSIONS

By means of two simple flow models, values of local apparent
and "true" friction coefficients have been computed from experimental
data obtained for a supersonic flow of air in the entrance region of
round tubes, with and without heat transfer. Four different values of
the inlet diameter Reynolds number are selected to cover the region
where a laminar boundary layer appears to exist for some distance

downstream of the tube entrance. Due to small inherent errors in pres-
sure measurement, considerable scattering has been observed for values
of friction coefficients calculated on the basis of individual measure-
ments over a short distance of flow. Although theoretical analyses for
laminar flow both over a flat plate and in the entrance region of a tube
indicate a decrease of true friction coefficient with heat addition, the
experimental scattering mentioned above obscures any definite effect of
heat addition on either the apparent or the true friction coefficients.

On the basis of a theoretical analysis for the laminar boundary
layer of a compressible flow in the entrance region of a tube, a new
method of calculating the friction coefficients has been proposed in order
to eliminate this experimental scattering. The local apparent friction
coefficient computed on the basis of the 1-D.F.M. is found to increase
with heat addition. However, contrary to what is predicted from theory,
the local "true" friction coefficient computed on the basis of the sim-
plified 2-D.F.M. is found to increase also with heat addition. This dis-

crepancy may be explained by the fact that this arbitrary 2-D.F.M. has
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not completely taken account of the actual change in the momentum
flux. Thus, the "true" friction coefficient computed on this basis
will be somewhat too high.

For that portion of the flow where the boundary layer appears
to be laminar, the values of both the local and the "true" friction co-
efficient computed on the basis of the mean curves obtained by the new
method mentioned above are found to agree qualitatively with those
predicted by theory for laminar flow both over a flat plate and in the
entrance region of a tube. Similar qualitative agreement appears to
exist also in the lower half of Fig. 7, where the local "true" friction
coefficients are computed on the basis of individual measurements
over a short distance of flow.

Better quantitative agreement between experimental and the-
oretical values of friction coefficient is expected, if the theory for the
laminar boundary layer of a compressible flow in the entrance region
of a tube takes into account the variation of viscosity and thermal con-
ductivity of air inside the boundary layer.
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